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Objectives :
The objective of this program is as follows :
e Process solutions to achieve high critical current in thick-film HTS 2G wires, and

e Development of conductor with improved magnetic field performance.

Status of Effort :

This was a short (less than 1 year) program to build on the success of the previously
funded AFOSR Contract FA9550-04-C-0020. In the last year of this program, we made
major progress in both objectives of the program. We fabricated films of different thickness
by our standard MOCVD processes and worked with our collaborators (ORNL, LANL,
FSU,) to understand the microstructural reasons for the Ic performance using a variety of
advanced characterization tools. We then modified our MOCVD process using a multipass
technique to improve Ic performance in thick films. We modified rare-earth composition

to improve critical current performance.

Experimental :

MOCVD of YBCO was conducted in a custom-built facility at SuperPower
described in previous Progress reports. The surface morphology of the YBCO films was
examined by Field Emission Scanning Electron Microscope (FESEM) followed by
compositional analysis by Energy Dispersive X-ray Spectroscopy (EDS). In addition we
also analyze bulk composition by Inductively Coupled Plasma (ICP) spectroscopy and
elemental depth profiling by Glow Discharge Optical Emission Spectroscopy. Film cross
sections were made with Focussed lon Beam Milling (FIB). The texture of the films was
analyzed by XRD including polefigure measurements. The thickness of the films was

measured by surface profilometry.

Accomplishments/New Findings :
In our Final Report for Contract FA9550-04-C-0020 that ended in May 2007, we
reported improvements in thickness influence on I¢ of MOCVD-based 2G wires. The

thickness was varied by a multipass approach where each pass was a distinct MOCVD



process run, and the subsequent layer was deposited atop the film processed in the previous
pass. By this approach, we could modify the process conditions as needed in each pass. The
thickness of film deposited in each pass was approximately 0.7 micron. We reported
achievement of 720 A/cm over a 3.5 micron MOCVD film. We also showed
microstructural features such as a-axis grain growth and compositional variation that
limited the Jc of 2.8 micron thick films. It was clear from that work that microstructural
complications increase with thickness. So, we focused our effort on achieving higher Ic in
thinner films. In this effort, we modified the precursor chemistry from Y-Sm-based to Gd-
Y-based materials.

Using Gd-Y precursors, we were able to consistently achieve Jc over 4.5 MA/cm? at self
field in 0.7 micron thick films compared to about 4 MA/cm” in films of same thickness
with Y-Sm precursors. Figure 1 shows a cross sectional TEM image of a 0.7 micron thick
GdYBCO film. An abundance of defects can be seen both along the horizontal and vertical
directions. These defects were found to be (Gd,Y) oxide similar to the (Y,Sm) oxide

defects seen in films before.
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Figure 1. Cross sectional TEM image of a 0.7 micron MOCVD film made with Gd-Y-based precursors.



Figure 2 shows Ic and Jc of films of increasing thickness using the Gd-Y precursor
chemistry. Results from 2007 and 2006 using Y-Sm precursor chemistry are also included
for comparison. From the figure, it can be seen that higher currents can be achieved with
Gd-Y precursor chemistry. In particular, a 2.8 micron thick film was grown with a critical
current of 740 A/cm. This value is even better than that achieved in a 3.5 micron thick film
using Y-Sm precursor chemistry. This high Ic value was measured over the entire width of
tape of 12 mm without patterning using continuous dc currents. A I-V curve obtained from

this measurement is shown in Figure 3. The Jc of the 2.8 micron film is 2.65 MA/cm®.
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Figure 2. Critical currents and critical current densities of 2G wire fabricated by MOCVD with different
YBCO layer thickness using (Gd, Y) and (Sm.Y) precursors.
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Figure 3. I_V curve obtained over a short sample of GAYBCO with 2.8 micron thick film. The measurement

was conducted over the entire width of 12 mm without patterning.

Next, the in-field performance of the 2.8 micron thick GAYBCO film was examined at 77

K and 65 K and the results are shown in Figure 4 and summarized in Table 1.

10000 - —
2.8 micron thick + le (77K, || ab)
(Y,Gd)BCO = 1c (77K, || ¢)
E & Ic (65K, || ab)
(3]
< 1000 -g—‘éﬁ-_:‘ o lc (65K, || )
‘E “‘-‘ “'A
= llla .\h A e
5 -, ”
o " - A
I o o
L 100 = _:-:-_‘_‘H““ |
2 . —
S
|
@
10 1 e |
0 2 4 6 8

Magnetic Field (T)

Figure 4. Critical currents over a range of magnetic fields at 77 K and 65 K of a 2.8 micron thick GAYBCO
film.



Table I. Critical current and Jc values obtained at 77 K, 1 T and 65 K, 3 T of a 2.8 micron thick GAYBCO

film
Ic (A/cm) Jc (MA/cm?)
77K, 1T,B|| a-b 419 1.5
77K 1T, B c 16 | 042
65K, 3T, B||a-b 468 167
65K,3T,B|| c 181 065

As shown in Table I, a high Jc is achieved especially in the orientation of field parallel to

the a-b plane. An examination of the microstructure of the film (Figure 5) shows an

abundance of defects both along the a-b plane and c-axis as seen in the 0.7 micron thick

film (Figure 1).

Figure 5. Cross sectional TEM image of a 2.8 micron MOCVD film made with Gd-Y-based precursors



Compositional mapping was conducted over the cross section of the 2.8 micron film and

the results are shown in Figure 6. As shown in the figure, the defects along the horizontal

direction were confirmed to be Gd-Y rich.

Figure 6. Compositional mapping of a 2.8 micron thick GAYBCO film.



We next explored films thicker than 2.8 microns. Additional passes each resulting in 0.7
micron thicker layers were done up to a total thickness of 5 microns. Unfortunately, not

only the critical current density reduced but we found a sharp decrease in critical current
itself in films thicker than 2.8 microns as shown in Figure 7. T¢ measurements showed

only a slight drop in Tc in thicker films (Figure 8).
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Figure 7. Critical current levels of GdYBCO films at 77 K up to 5 microns in thickness.
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Figure 8. Tc of GAYBCO films up to 5 microns in thickness.



In order to eliminate any effect of Tc change in thicker films, critical current measurements
were performed at 5 K and the results are shown in Figure 9. As shown in the figure, even
at temperatures far from Tc, films thicker than 2.8 microns show lower Ic. Next, in order to
understand the microstructural causes for the Ic decrease in films thicker than 2.8 microns,
we studied the fraction of a-axis and 45 degree rotated grains in all films. Results from
these measurements are shown in Figures 10 and 11. As show in the figures, the a-axis
fraction did not increase in films thicker than 2.8 microns. However, more 45 degree
rotated grains were found in such thicker films. Also, electron diffraction results showed
more polycrystalline content (or random orientation) in films thicker than 2.8 microns. Our
future work in this area would be focused on reducing such misoriented grains so as to

achieve higher currents in films thicker than 3 microns.
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Figure 9. Critical current levels of GAYBCO films at 5 K up to 5 microns in thickness.
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Figure 10. Fraction of a-axis grains in GdYBCO films up to 3.5 microns in thickness.
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Figure 10. Fraction of 45-degree rotated grains in GAYBCO films up to 3.5 microns in thickness.
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Interactions/Transitions :

2N =P

Conference Presentations ;

ICMC, Chattanooga, July 2007

DOE Peer Review, Washington D.C., August 2007
ISS, Tsukuba, November 2007

CCA, Jeju Island, November 2007

Interaction :

SuperPower has had extensive collaboration with ORNL, LANL, and FSU for

understanding the in-field performance and to elucidate the microstructural reasons for the

performance of our MOCVD-based conductors. Additional microstructural work, Raman

Spectroscopy, and MOI was done together with ANL. Samples of MOCVD tapes have

been provided to AFRL for various measurements. We have collaborated with Florida

State University and University of Houston for stability, and mechanical property
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measurements. We have worked with Ohio State University on ac loss measurements and
with California State University for VTLSM. SEM, TEM, AFM, and FIB analysis have
been conducted by SuperPower staff at U. Albany.

c. Transition :

The AFOSR program has had a large impact on ongoing materials and device
development programs at SuperPower. The AFOSR program has been a critical program
at SuperPower for the development of YBCO 2G wire. The success of the program has led
to a high-performance and potentially lower cost replacement for Bi-2223 conductor. Bi-
2223 conductor is currently the main HTS conductor available in long lengths and is used
in all demonstration projects. Based on its superior performance and potential lower cost,
YBCO is the clear choice for HTS conductor for all these devices. SuperPower recognized
this fact and has strongly supported the AFOSR program through funds for capital
equipment including MOCVD facilities. Last year, SuperPower committed substantial
funds towards capital equipment for MOCVD facilities that include upgrades to Pilot
MOCVD facility and Prototype MOCVD facility, as well as purchase of a new Pilot
MOCVD facility. The AFOSR program will eventually enable the fabrication of a high
performance superconducting tape that can find wide use in military, electric power,

magnetic, medical and applications.

8. Inventions :

None.

9. Honors & Awards :

None
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